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 One of the most difficult factors in the effective installation of a service system is the 

availability of a continuous power source. We examine a fault-tolerant power generating 

system of finite operational units with warm standby unit provisioning in this work. Each 

operational and standby unit's time-to-failure is considered to be exponentially distributed. 

The time-to-repair for the failing units by the single service facility follows the arbitrary 

distribution. For modeling purpose, we also included real operating behaviors such as 

imperfect coverage of unit failure, switching failure of standby unit, reboot delay, switch over 

delay, and so on. The one and only input required for the assessment of the explicit equation 

for the system's steady-state probability is the repair time distribution's Laplace-Stieltjes 

transform (LST). The numerical findings for the following repair time distributions are 

presented: exponential (M), n-stage Erlang (Ern), and deterministic (D). Concluding 

evaluations are also provided. 

Keywords:  Imperfect coverage, Warm standby, Laplace-Stieltjes transformation, Repair time                                                    

distributions, Switch over delay 

 

1. Introduction: The random failures and systematic repairs of machining system have a 

major influence on machining system’s output and productivity. As a result, effective 

maintenance and repair plans are essential to ensure that the machining system runs 

continuously and smoothly without interruption. The influence of a random failure of the 

system on the efficiency of ongoing manufacturing must also be considered while 

constructing and investigating the system. Gupta and Rao (1994) established a recursive 

method to compute the steady state probabilities of the machine interference model: 

(M/G/1) K. Moustafa (1997) worked on reliability analysis of K-out-of-N: G systems 

with dependent failures and imperfect coverage. Huang and Ke (2009) investigate 
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comparative analysis on a redundant repairable system with different 

configurations. Wang et al. (2014) optimized an M/G/1 machine repair problem with 

multiple imperfect coverage. Liou (2015) worked on analysis of the machine repair 

problem with multiple vacations and working breakdowns. Shekhar et al. (2017) 

investigated a survey on queues in machining system: progress from 2010 to 

2017. Shekhar et al. (2019) considered a fault-tolerant redundant repairable system with 

different failures and delays. Yang and Tsao (2019) obtained reliability and availability 

analysis of standby systems with working vacations and retrial of failed 

components. Shekhar et al. (2020) discussed M/G/1 fault-tolerant machining system with 

imperfection. Chen and Wang (2020) analysed reliability and sensitivity of a retrial 

machine repair problem with warm standbys and imperfect coverage. Breneman et al. 

(2022) Sanusi and Yusuf (2023) worked on availability and cost–benefit analysis of a 

fault tolerant series–parallel system with human-robotic operators.  

The analysis of this research paper is structured as follows: we give introduction in section 1. 

Section 2 has a full model explanation that includes notations also. Section 3 introduces the 

recursive approach for computing the steady-state probability and availability of the 

repairable system. In section 4, various forms of repair time distributions are employed, and 

explicit equations for state probability and availability are constructed. Section 5 explored the 

sensitivity of parameters. Section 6 draws conclusions and discussions. 

2. Model Explanation:  

The system under consideration is applicable to a wide range of electricity and electronics 

industries where system availability is essential and repairs are required. For this purpose of 

the modeling, we assume that the system has one primary unit and one standby unit to 

provide a consistent and uninterrupted power supply to the service system. The system has 

been constructed with the assumption that the timeframes to failure and repair of units (main 

and warm standby) are distributed exponentially. The failure rates for the primary and warm 

standby units are λ and α (0 < α < λ < 1) respectively. To identify failure or provide 

immediate repair, all primary and standby units are under the care of a single repairman and 

automated monitoring device. The automatic monitoring device identifies the issue with the 

performance of the system with a high degree of certainty. After successful coverage, the 

failing unit is quickly replaced by an available standby unit with an exponentially distributed 

switchover time of 1/σ. The switchover may fail with failure probability p. 
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When a units' failure is not successfully covered, the system enters an unsafe failure state, 

and the failed unit is removed from the system through a reboot procedure. There are two 

types of reboot delay rate β1 (for standby unit) and β2 (for standby unit). The delay between 

reboots is considered to be exponentially distributed. Because the reboot procedure is so 

quick, the probability of any other event occurring is quite unlikely. In an automated 

monitoring device, for continuous system operation, the available standby unit promptly 

changes in place of the failed running unit, with a switching failure probability of q. The 

failed unit is repairable and is immediately delivered to a single repairman on a first come, 

first served (FCFS) basis. Repair times are identically and independently dispersed random 

variables (iidrvs) with a probability density function b(u), distribution function B(u), and 

mean repair time by b1. A unit that has been repaired is as good as new. 

Notations: M (t): Number of primary component in the system at time t, (initially) 

      N (t): Number of warm standby component in the system 

      U (t): Lasting repair time for the component being repaired 

      λ:  Failure rate of primary component in the system  

      α:  Failure rate of a warm standby component in the system 

      c: Coverage probability (Detection rate) 

      σ:  Switchover time  

      β1:  Reboot delay rate for standby component  

      β2:  Reboot delay rate for primary component 

      b (u): Probability density functions for repair distribution 

      b1: Mean repair time 

  Pm, n (t): Probability that at time t, where m and n are operating and warm standby units                                  

respectively. Where m, n = 0, 1 

    
( )sP*

n,m : Laplace-Stieltjes transformation of Pm, n (t), 

   
( )( )sP 1*

n,m : First order derivative of Pm, n (t) with respect to s 
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3. Steady-state probabilities and availability: 

We define the following state probabilities for 0t,0u   

( ) ( ) ( ) ( ) ( ) duutUu,0tI,1tN,1tMobPrt,uP 1,1 +====  

( ) ( ) ( ) ( ) ( ) duutUu,0tI,0tN,1tMobPrt,uP 0,1 +====  

( ) ( ) ( ) ( ) ( ) duutUu,0tI,0tN,0tMobPrt,uP 0,0 +====  

Fig. 1 STATE TRANSITION DIAGRAM 
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( ) ( ) ( ) ( ) ( ) duutUu,1tI,1tN,0tMobPrt,uQ 1,0 +====  

( )
( ) ( ) 








+=
=

duutUu,1tI

,machinedbytansfailedtheoferagecovimperfect
obPrt,uR O

 

( )
( ) ( ) 













+=
=

duutUu,1tI

,machinedbytansfailedtheoferagecovimperfectobPrt,uRS
 

Therefore, 

( ) ( )


=
0

1,11,1 dut,uPtP ;   ( ) ( )


=
0

0,10,1 dut,uPtP ;  ( ) ( )


=
0

0,00,0 dut,uPtP  

( ) ( )


=
0

1,01,0 dut,uQtQ ;  ( ) ( )


=
0

OO dut,uRtR ;  ( ) ( )


=
0

SS dut,uRtR  

We have the following differential difference equations of each state. 

( ) ( ) ( ) ( )t,0PtPtP
dt

d
0,11,11,1 ++−=                                                                                         (1) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )t,uQp1t,uRt,0Pubt,ucPt,uPt,uP
ut

1,0S10,01,10,10,1 −++++−=











−




 (2)  

( ) ( ) ( ) ( )t,uQPt,uqPt,uPt,uP
ut

1,01,10,10,0 ++=











−




                                                     (3)  

( ) ( ) ( ) ( ) ( )tRtcPq1tQtQ
dt

d
O21,11,01,1 +−+−=                                                                     (4)  

( ) ( ) ( ) ( )tP)c1(q1tRtR
dt

d
1,1O2O −−+−=

                                                                             
(5) 

( ) ( ) ( )tP)c1(tRtR
dt

d
1,1S1S −+−=

                                                                                        
(6)   

We illustrate the following results in steady state (as →t ). 

( )tPlimP 1,1
t

1,1
→

= ;   ( )tPlimP 0,1
t

0,1
→

= ;  ( )tPlimP 0,0
t

0,0
→

=  

( )tQlimQ 1,0
t

1,0
→

= ;  ( )tRlimR O
t

O
→

= ;  ( )tRlimR S
t

S
→

=

 

and 

( ) ( )t,uPlimuP 1,1
t

1,1
→

= ;   ( ) ( )t,uPlimuP 0,1
t

0,1
→

= ;  ( ) ( )t,uPlimuP 0,0
t

0,0
→

=  

( ) ( )t,uQlimuQ 1,0
t

1,0
→

= ;  ( ) ( )t,uRlimuR O
t

O
→

= ;  ( ) ( )t,uRlimuR S
t

S
→

=  

Further we define,           

( ) ( ) 1,11,1 PubuP =                                                                                                                        (7) 



Kanta and Sanjay Chaudhary (Pg. 86-100) 91   

 

( ) ( ) 1,01,0 PubuQ =                                                                                                                      (8) 

( ) ( ) OO RubuR =                                                                                                                       (9) 

( ) ( ) SS RubuR =                                                                                                                      (10) 

We get the following steady state equations from (1) - (6), using the equations (7) - (10). 

( ) ( )0PP0 0,11,1 ++−=                                                                                                         (11) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) 1,0S10,01,10,10,1 Qubp1Rub0PubPucbuPuP
u

−++++−=



−                   (12)  

( ) ( ) ( ) ( ) 1,01,10,10,0 QubPPuqbuPuP
u

++=



−                                                                   (13)  

( ) O21,11,0 RcPq1Q0 +−+−=                                                                                           (14)  

( ) 1,1O2 P)c1(q1R0 −−+−=
                                                                                               

(15) 

1,1S1 P)c1(R0 −+−=
                                                                                                         

(16)
 

We obtain the following results from equations (11), (15) and (16). 

( ) ( ) 1,10,1 P0P +=                                                                                                                  (17) 

( )
1,1

2

O P
)c1(q1

R


−−
=

                                                                                                         
(18) 

1,1

1

S P
)c1(

R


−
=

                                                                                                                   
(19) 

We have from equation (14) by using equation (18). 

( )
1,11,0 P

q1
Q



−
=                                                                                                                   (20)   

Here we define Laplace-Stieltjes transform in the term of Laplace variable s for probability 

density function ( )ub  of repair times and state probabilities as following. 

( ) ( ) ( )duubeudBesB
0

su

0

su*




−


− ==  ,    ( ) ( )duuPesP 0,1
0

su*

0,1 


−=    

( ) ( ) uduP0PP
0

0,1

*

0,10,1 


== ,    ( ) ( ) ( )0PsPsduuP
du

d
e 0,1

*

0,10,1
0

su −=


−  

and 

( ) ( )duuPesP 0,0
0

su*

0,0 


−=  ,    ( ) ( ) uduP0PP
0

0,0

*

0,00,0 


== ,    

( ) ( ) ( )0PsPsduuP
du

d
e 0,0

*

0,00,0
0

su −=


−  
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Now taking Laplace-Stieltjes transform (LST) on both sides of equations (12) and (13), we 

get 

( ) ( ) ( ) ( )  ( ) ( )0PsBQp1R0PcPsPs 0,11,0S10,01,10,1 −−+++=−                                      (21)   

( ) ( ) ( ) ( ) ( )0PQsBPPsqBsPssP 0,01,01,10,10,0 −++=−                                                       (22) 

Setting =s and substituting the values of equations (17), (19) and (20) into equation (21), we 

obtain 

( )
( )( )  ( )
( ) 0,00,0 P

B

Bq1p1
0P



−−+−+
=





                                                                      (23)   

Setting 0s = and substituting the values of equations (20) and (23) into equation (22), we get 

( )
( ) ( )( )

( ) 1,10,1 P
B

B1
0P



−+
=






                                                                                               (24)  

Now differentiating equation (21) with respect to s and setting 0s =  and putting the value of 

( ) ( )
( )

0S

1

1
s

sB
0Bb

=
















−=−= then we obtain the following expression, 

( ) ( ) ( ) ( ) ( ) 1,0S10,01,110,1

1

0,1 Qp1R0PcPb0P0P −+++−=                                                  (25) 

Putting the values of equations (19), (20), (23) and (24) into equation (25), we get   

( ) ( )
( ) ( )( )

( ) 1,12

11

0,1 P
B

Bb1
0P



−−+
=






                                                                                       
(26) 

Similarly differentiating equation (22) with respect to s and setting 0s =  we obtain 

( ) ( ) ( ) 1,011,11

1

0,10,0 QbPPqb0P0P ++−=                                                                                (27) 

We get the resulting value after substituting the equations (20) and (26) into equation (27)   

( )
( ) ( )  ( )  ( )

( ) 1,12

1

2

1
0,0 P

B

Bqq1pb1bB
0P 











+−+−++
=




                                           (28) 

Following is the normalizing condition to obtain the value of 1,1P  

( ) ( ) 1RRQ0P0PP SO1,00,00,11,1 =+++++                                                                              (29) 

Putting the values of ( )0P 0,1


, ( )0P 0,0 , 1,0Q , OR  and SR  into equation (29), we obtain the 

resulting value 

( )
M

B
P 21

1,1


=



                                                                                                                (30) 

Where 
( )( )  ( ) ( ) 

( )
( ) ( )++









−+

−+−++−+
= 

121

2

21121
bB

c1

c1q1qq1pb1
M                                                                                                                       
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After getting the explicit expression for the state probability
1,1P , we get the remaining state 

probabilities as follow 

( )
( ) ( )( )

M

B1
0P 21

0,1


−+
=




                                                                                          (31)  

( )
( ) ( )( ) ( )  ( ) 

M

Bqq1pb1bB
0P 1

2

121
0,0



+−+−++
=




                                      (32) 

( ) ( )
M

Bq1
Q 21

1,0

−
=



                                                                                                      (33)  

( ) ( )
M

B)c1(q1
R 1

O

−−
=



                                                                                               
(34) 

( )
M

B)c1(
R 2

S

−
=



                                                                                                        
(35) 

Now the explicit expression for the steady state availability can be obtained as following 

( )0PPA 0,11,1V

+=                                                                                                                                          (36) 

Substituting the values of equations (30) and (31) into equation (36), we get   

( )( ) 
M

B1
A 21

V


−+
=



                                                                                               (37)  

4. Special Scenarios: 

The explicit equation for state probabilities and system availability may be easily determined 

for different continuous distributions of service durations based on the flow of the 

solution. We just need a Laplace-Stieltjes transform (LST) of the repair time distribution for 

the given recursive technique. We offer the explicit expression of state probabilities as well 

as the system availability for exponential (M), Erlangian with n stages (Ern) and 

Deterministic (D) distributions. 

a) Exponential distribution: The repair times are distributed exponentially with a mean 

rate. It belongs to the gamma distribution. The Laplace-Sieltjes transform of the 

probability density function 
u-e b(u) = is given by 

                                                             ( )
+


=*B  

As a result, we have


=
1

b1 . We have the following expressions: 
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( )( )  ( ) ( ) 

( )
( )( )+++









−+

−+−++−+


=

21

2

2121

2

21
1,1

c1

c1q1qq1p
P     (38)                                                                

( )
( )

( )( )  ( ) ( ) 

( )
( )( )+++









−+

−+−++−+

+
=

21

2

2121

21
0,1

c1

c1q1qq1p
0P     (39)                                                 

( )
( ) ( ) ( )( ) ( )  
( )( )  ( ) ( ) 

( )
( )( )








+++









−+

−+−++−+


+−++−+++
=

21

2

2121

22

21
0,0

c1

c1q1qq1p

qq1p
0P         (40)         

( )
( )( )  ( ) ( ) 

( )
( )( )+++









−+

−+−++−+

−
=

21

2

2121

21

2

1,0

c1

c1q1qq1p

q1
Q         (41)                                                                            

( )
( )( )  ( ) ( ) 

( )
( )( )+++









−+

−+−++−+

−−
=

21

2

2121

1

2

O

c1

c1q1qq1p

)c1(q1
R

         
(42)

                                                                                           

( )( )  ( ) ( ) 

( )
( )( )+++









−+

−+−++−+

−
=

21

2

2121

2

2

S

c1

c1q1qq1p

)c1(
R

         
(42)

                                                                                                
 

 
( )( )  ( ) ( ) 

( )
( )( )+++









−+

−+−++−+

++
=

21

2

2121

21
V

c1

c1q1qq1p
A            (43)

                                                                                                
                                                                                           

b) n- stage Erlangian distribution:  

The failure repair time has an n-stage Erlang distribution with shape parameter n and 

rate μ. It is also a gamma distribution member and the sum of n independent 

exponential variables with mean 1/ μ each, implying that repair is done in n stages 

with mean repair rate μ. In this particular case, we have 

                                                                

( )
n

*

n

n
B 









+


=

 

We have resulting stepwise findings for the explicit expressions for state probabilities 

and system availability. 
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c) Deterministic distribution: 

It is also known as a degenerate distribution since it only accepts a single value. The 

repair time follows a deterministic distribution with p being the mean rate. In this 

scenario, we have the following Laplace-Sieltjes transform of the probability density 

function. 

                                                             

( ) ( )−= /* eB  
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5. Numerical findings: 

This section has dealt extensively with the numerical distribution of the availability of the 

one-operating system with one standby component. We set the values of the parameters for 

numerical simulation as follows [Ref. 9]:  

6.0= , 20= , 601 = , 752 = , 5.0= , 50= , 6.0q = , 8.0c = , 9.0p = , 04.0b1 =  

We analyze three repair time distributions such as Exponential (M), n – stage Erlang (Ern) 

and deterministic (D) for comparative and demonstration purposes.  

We explore following cases for numerical computing and examine the influence of various 

parameters , , , 1 , 2 , c, p, q and  on the availability and probabilities of three repair 

time distributions shown in Tables 1 – 5. 
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Case 1: Availability and state probabilities of the system. 

 

 

 

 

      

     

      

 

 

 

 

Case 2: The value of  vary and other parameters remain constant. After that we see effect 

on availability and state probability 1,1P . 

 

 

 

 

 

 

 

 

 

 

Distribution M Ern   D
  

Parameters μ = 20 μ = 20
 

μ = 20
 

P1, 1 0.93875248 0.93824823 0.93791568 

P1, 0 0.06255786 0.06348531 0.06375726 

P0, 0 0.05975843 0.05509873 0.05467325 

Q0, 1 0.00654638 0.00652579 0.00652315 

RO 0.00007698 0.00007698 0.00007698 

RS 0.00005368 0.00005368 0.00005368 

AV

 
0.98643548 0.98724987 0.98784652 

 

Indices 

 

 

Distribution 

 

μ 

20 22 24 26 28 30 32 34 36 

 

P1, 1 

M 

Ern 

D
 

0.9436 

0.9436 

0.9436 

0.9438 

0.9437 

0.9437 

0.9439 

0.9439 

0.9439 

0.9440 

0.9439 

0.9439 

0.9441 

0.9441 

0.9441 

0.9442 

0.9441 

0.9441 

0.9443 

0.9443 

0.9443  

0.9444 

0.9444 

0.9444  

0.9445 

0.9445 

0.9445 

 

AV

 

 

M 

Ern 

D
 

0.9828 

0.9845 

0.9852 

0.9835 

0.9847 

0.9855 

0.9838 

0.9848 

0.9857 

0.9844 

0.9849 

0.9858 

0.9851 

0.9852 

0.9859 

0.9855 

0.9858 

0.9860 

0.9858 

0.9863 

0.9865 

0.9859 

0.9868 

0.9875 

0.9865 

0.9874 

0.9888 

Table 1  

Table 2  
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Case 3: The value of  vary and other parameters remain constant. After that we see effect 

on availability and state probability 1,1P . 

 

 

 

Case 4: The value of  vary and other parameters remain constant. After that we see effect 

on availability and state probability 1,1P . 

 

 

 

 

 

 

 

 

 

Indices 

 

 

Distribution 

 

λ 

0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 

 

P1, 1 

M 

Ern 

D
 

0.9683 

0.9683 

0.9683 

0.9605 

0.9605 

0.9605 

0.9579 

0.9573 

0.9573 

0.9540 

0.9539 

0.9539 

0.9535 

0.9535 

0.9535 

0.9498 

0.9498 

0.9498 

0.9454 

0.9449 

0.9449 

0.9418 

0.9418 

0.9418 

0.9385 

0.9382 

0.9382 

 

AV

 

 

M 

Ern 

D
 

0.9949 

0.9958 

0.9972 

0.9935 

0.9944 

0.9975 

0.9932 

0.9939 

0.9965 

0.9925 

0.9935 

0.9953 

0.9905 

0.9918 

0.9948 

0.9873 

0.9878 

0.9886 

0.9858 

0.9873 

0.9875 

0.9846 

0.9868 

0.9872 

0.9819 

0.9854 

0.9865 

 

Indices 

 

 

Distribution 

 

α 

0.010 0.015 0.020 0.025 0.030 0.035 0.040 0.045 0.050 

 

P1, 1 

M 

Ern 

D
 

0.9253 

0.9253 

0.9253 

0.9252 

0.9251 

0.9251 

0.9251 

0.9251 

0.9251 

0.9250 

0.9249 

0.9249 

0.9249 

0.9249 

0.9249 

0.9248 

0.9247 

0.9247 

0.9247 

0.9246 

0.9246 

0.9247 

0.9247 

0.9247 

0.9246 

0.9245 

0.9245 

 

AV

 

 

M 

Ern 

D
 

0.9675 

0.9682 

0.9691 

0.9669 

0.9671 

0.9685 

0.9665 

0.9668 

0.9674 

0.9662 

0.9665 

0.9672 

0.9659 

0.9662 

0.9668 

0.9655 

0.9658 

0.9665 

0.9654 

0.9658 

0.9663 

0.9652 

0.9655 

0.9658 

0.9642 

0.9654 

0.9656 

Table 3  

Table 4  
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Case 5: The value of  vary and other parameters remain constant. After that we see effect 

on availability and state probability 1,1P . 

 

 

 

6. Conclusion: 

The availability of a warm standby system is shown in this study. This system is made up of 

one primary and one standby unit that deal with two forms of reboot delay and switching 

failure. When the primary unit fails, it is immediately replaced by a standby unit. The failed 

units are repaired on a first come, first serve basis. First, we calculate the steady-state 

availability of this system using the supplementary variable technique and the Laplace 

transformation. We examine numerical findings based on explicit representations of 

availability and state probability for three repair time distributions, namely; exponential, n - 

stage Erlang, and deterministic distributions. On the basis of this computation we find that 

deterministic distribution makes better result than other two distributions exponential and n - 

stage Erlang respectively. 
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